Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Undersea Hyperb Med ; 51(1): 7-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615348

RESUMEN

Background: Hyperbaric oxygen (HBO2) therapy is an alternative method against the deleterious effects of ischemic/reperfusion (I/R) injury and its inflammatory response. This study assessed the effect of preoperative HBO2 on patients undergoing pancreaticoduodenectomy. Study Design: Patients were randomized via a computer-generated algorithm. Patients in the HBO2 cohort received two sessions of HBO2 the evening before and the morning of surgery. Measurements of inflammatory mediators and self-assessed pain scales were determined pre-and postoperatively. In addition, perioperative variables and long-term survival were collected and analyzed. Data are presented as median (mean ± SD). Results: 33 patients were included; 17 received preoperative HBO2, and 16 did not. There were no intraoperative or postoperative statistical differences between patients with or without preoperative HBO2. Erythrocyte sedimentation rate (ESR), IL-6, and IL-10 increased slightly before returning to normal, while TGF-alpha decreased before increasing. However, there were no differences with or without HBO2. At postoperative day 30, the pain level measured with VAS score (Visual Analog Score) was lower after HBO2 (1 ± 1.3 vs. 3 ± 3.0, p=0.05). Eleven (76%) patients in the HBO2 cohort and 12 (75%) patients in the non- HBO2 had malignant pathology. The percentage of positive lymph nodes in the HBO2 was 7% compared to 14% in the non-HBO2 (p<0.001). Overall survival was inferior after HBO2 compared to the non- HBO2 (p=0.03). Conclusions: Preoperative HBO2 did not affect perioperative outcomes or significantly change the inflammatory mediators for patients undergoing robotic pancreaticoduodenectomy. Long-term survival was inferior after preoperative HBO2. Further randomized controlled studies are required to assess the full impact of this treatment on patients' prognosis.


Asunto(s)
Oxigenoterapia Hiperbárica , Humanos , Pancreaticoduodenectomía/efectos adversos , Oxígeno , Mediadores de Inflamación , Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474303

RESUMEN

Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.


Asunto(s)
Buceo , Oxígeno , Humanos , Buceo/fisiología , Nitrógeno , Hipoxia , Inflamación
3.
Eur J Transl Myol ; 34(1)2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526419

RESUMEN

Scientific conferences increasingly suffer from the need for short presentations in which speakers like to dwell on the details of their work. A mitigating factor is to encourage discussion and planning of collaborations by organizing small meetings in a hotel large enough to host all attendees. This extends discussions' opportunities during morning breakfasts, lunches, dinners and long evenings together. Even if the vast majority of participants will not stay for the entire duration of the Conference, the possibilities for specialists to interact with specialists who are even very distant in terms of knowledge increase enormously. In any case, the results in terms of new job opportunities for young participants outweigh the costs for the organizers. Thirty years of Padova Muscle Days offer many examples, but the authors of this report on the state of the art of Mobility Medicine testify that this also happened in the 2024 Five Days of Muscle and Mobility Medicine (2024Pdm3) hosted at the Hotel Petrarca, Thermae of Euganea Hills and Padua, Italy which is in fact a valid countermeasure to the inevitable tendencies towards hyperspecialization that the explosive increase in scientific progress brings with it.

4.
J Biomed Opt ; 28(11): 115002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078151

RESUMEN

Significance: Pulse oximetry estimates the arterial oxygen saturation of hemoglobin (SaO2) based on relative changes in light intensity at the cardiac frequency. Commercial pulse oximeters require empirical calibration on healthy volunteers, resulting in limited accuracy at low oxygen levels. An accurate, self-calibrated method for estimating SaO2 is needed to improve patient monitoring and diagnosis. Aim: Given the challenges of calibration at low SaO2 levels, we pursued the creation of a self-calibrated algorithm that can effectively estimate SaO2 across its full range. Our primary objective was to design and validate our calibration-free method using data collected from human subjects. Approach: We developed an algorithm based on diffuse optical spectroscopy measurements of cardiac pulses and the modified Beer-Lambert law (mBLL). Recognizing that the photon mean pathlength (⟨L⟩) varies with SaO2 related absorption changes, our algorithm aligns/fits the normalized ⟨L⟩ (across wavelengths) obtained from optical measurements with its analytical representation. We tested the algorithm with human freedivers performing breath-hold dives. A continuous-wave near-infrared spectroscopy probe was attached to their foreheads, and an arterial cannula was inserted in the radial artery to collect arterial blood samples at different stages of the dive. These samples provided ground-truth SaO2 via a blood gas analyzer, enabling us to evaluate the accuracy of SaO2 estimation derived from the NIRS measurement using our self-calibrated algorithm. Results: The self-calibrated algorithm significantly outperformed the conventional method (mBLL with a constant ⟨L⟩ ratio) for SaO2 estimation through the diving period. Analyzing 23 ground-truth SaO2 data points ranging from 41% to 100%, the average absolute difference between the estimated SaO2 and the ground truth SaO2 is 4.23%±5.16% for our algorithm, significantly lower than the 11.25%±13.74% observed with the conventional approach. Conclusions: By factoring in the variations in the spectral shape of ⟨L⟩ relative to SaO2, our self-calibrated algorithm enables accurate SaO2 estimation, even in subjects with low SaO2 levels.


Asunto(s)
Oximetría , Oxígeno , Humanos , Oximetría/métodos , Fotones , Luz , Algoritmos
5.
Metabolites ; 13(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37887357

RESUMEN

Long COVID-19 patients show systemic inflammation and persistent symptoms such as fatigue and malaise, profoundly affecting their quality of life. Since improving oxygenation can oppose inflammation at multiple tissue levels, we hypothesized that hyperbaric oxygen therapy (HBOT) could arrest inflammation progression and thus relieve symptoms of COVID-19. We evaluated oxy-inflammation biomarkers in long COVID-19 subjects treated with HBOT and monitored with non-invasive methods. Five subjects (two athletes and three patients with other comorbidities) were assigned to receive HBOT: 100% inspired O2 at 2.4 ATA in a multiplace hyperbaric chamber for 90 min (three athletes: 15 HBOT × 5 days/wk for 3 weeks; two patients affected by Idiopathic Sudden Sensorineural Hearing Loss: 30 HBOT × 5 days/wk for 6 weeks; and one patient with osteomyelitis: 30 HBOT × 5 days/wk for week for 6 weeks and, after a 30-day break, followed by a second cycle of 20 HBOT). Using saliva and/or urine samples, reactive oxygen species (ROS), antioxidant capacity, cytokines, lipids peroxidation, DNA damage, and renal status were assessed at T1_pre (basal level) and at T2_pre (basal level after treatment), and the results showed attenuated ROS production, lipid peroxidation, DNA damage, NO metabolites, and inflammation biomarker levels, especially in the athletes post-treatment. Thus, HBOT may represent an alternative non-invasive method for treating long COVID-19-induced long-lasting manifestations of oxy-inflammation.

6.
J Funct Morphol Kinesiol ; 8(4)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873905

RESUMEN

Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was to investigate the efficacy of a specific electrical stimulation (ES) treatment (without elicited muscular contraction) on two different scenarios: in the laboratory on eleven healthy volunteers (56.45 ± 4.87 years) after upper limbs eccentric exercise (Study 1) and in the field on fourteen ultra-endurance athletes (age 47.4 ± 10.2 year) after an ultra-running race (134 km, altitude difference of 10,970 m+) by lower exercising limbs (Study 2). Subjects were randomly assigned to two experimental tasks in cross-over: Active or Sham ES treatments. The ES efficacy was assessed by monitoring the oxy-inflammation status: Reactive Oxygen Species production, total antioxidant capacity, IL-6 cytokine levels, and lactate with micro-invasive measurements (capillary blood, urine) and scales for fatigue and recovery assessments. No significant differences (p > 0.05) were found in the time course of recovery and/or pre-post-race between Sham and Active groups in both study conditions. A subjective positive role of sham stimulation (VAS scores for muscle pain assessment) was reported. In conclusion, the effectiveness of ES in treating DOMS and its effects on muscle recovery remain still unclear.

7.
J Appl Physiol (1985) ; 135(4): 863-871, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650139

RESUMEN

Pulmonary gas exchange in breath-hold diving (BHD) consists of a progressive increase in arterial partial pressures of oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]) during descent. However, recent findings have demonstrated that [Formula: see text] does not consistently rise in all subjects. This study aimed at verifying and explaining [Formula: see text] derangements during BHD analyzing arterial blood gases and searching for pulmonary alterations with lung ultrasound. After ethical approval, 14 fit breath-hold divers were included. Experiments were performed in warm water (temperature: 31°C). We analyzed arterial blood gases immediately before, at depth, and immediately after a breath-hold dive to -15 m of fresh water (mfw) and -42 mfw. Signs of lung interstitial edema and atelectasis were searched simultaneously with a marinized lung ultrasound. In five subjects (-15 mfw) and four subjects (-42 mfw), the [Formula: see text] at depth seems to decrease instead of increasing. [Formula: see text] and lactate showed slight variations. At depth, no lung ultrasound alterations were seen except in one subject (hypoxemia and B-lines at -15 mfw; B-lines at the surface). Lung interstitial edema was detected in 3 and 12 subjects after resurfacing from -15 to -42 mfw, respectively. Two subjects developed hypoxemia at depth and a small lung atelectasis (a focal pleural irregularity of triangular shape, surrounded by thickened B-lines) after resurfacing from -42 mfw. Current experiments confirmed that some BH divers can experience hypoxemia at depth. The hypothesized explanation for such a discrepancy is lung atelectasis, which could not be detected in all subjects probably due to limited time available at depth.NEW & NOTEWORTHY During breath-hold diving, arterial partial pressure of oxygen ([Formula: see text]) and arterial partial pressure of carbon dioxide ([Formula: see text]) are believed to increase progressively during descent, as explained by theory, previous end-tidal alveolar gas measurements, and arterial blood gas analysis in hyperbaric chambers. Recent experiments in real underwater environment found a paradoxical [Formula: see text] drop at depth in some divers. This work confirms that some breath-hold divers can experience hypoxemia at depth. The hypothesized explanation for such a discrepancy is lung atelectasis, as suggested by lung ultrasound findings.


Asunto(s)
Buceo , Atelectasia Pulmonar , Edema Pulmonar , Humanos , Dióxido de Carbono , Buceo/efectos adversos , Atelectasia Pulmonar/diagnóstico por imagen , Atelectasia Pulmonar/etiología , Oxígeno , Análisis de los Gases de la Sangre , Ácido Láctico , Hipoxia , Edema
8.
Ultrasound J ; 15(1): 34, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603121

RESUMEN

After recent advancements, ultrasound has extended its applications from bedside clinical practice to wilderness medicine. Performing ultrasound scans in extreme environments can allow direct visualization of unique pathophysiological adaptations but can be technically challenging. This paper summarizes how a portable ultrasound apparatus was marinized to let scientific divers and sonographers perform ultrasound scans of the lungs underwater up to - 42 m. A metallic case protected the ultrasound apparatus inside; a frontal transparent panel with a glove allowed visualization and operation of the ultrasound by the diving sonographer. The inner pressure was equalized with environmental pressure through a compressed air tank connected with circuits similar to those used in SCUBA diving. Finally, the ultrasound probe exited the metallic case through a sealed aperture. No technical issues were reported after the first testing step and the real experiments.

9.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569737

RESUMEN

Hyperbaric oxygen therapy (HBOT) is a therapeutical approach based on exposure to pure oxygen in an augmented atmospheric pressure. Although it has been used for years, the exact kinetics of the reactive oxygen species (ROS) between different pressures of hyperbaric oxygen exposure are still not clearly evidenced. In this study, the metabolic responses of hyperbaric hyperoxia exposures for 1 h at 1.4 and 2.5 ATA were investigated. Fourteen healthy non-smoking subjects (2 females and 12 males, age: 37.3 ± 12.7 years old (mean ± SD), height: 176.3 ± 9.9 cm, and weight: 75.8 ± 17.7 kg) volunteered for this study. Blood samples were taken before and at 30 min, 2 h, 24 h, and 48 h after a 1 h hyperbaric hyperoxic exposure. The level of oxidation was evaluated by the rate of ROS production, nitric oxide metabolites (NOx), and the levels of isoprostane. Antioxidant reactions were assessed through measuring superoxide dismutase (SOD), catalase (CAT), cysteinylglycine, and glutathione (GSH). The inflammatory response was measured using interleukine-6, neopterin, and creatinine. A short (60 min) period of mild (1.4 ATA) and high (2.5 ATA) hyperbaric hyperoxia leads to a similar significant increase in the production of ROS and antioxidant reactions. Immunomodulation and inflammatory responses, on the contrary, respond proportionally to the hyperbaric oxygen dose. Further research is warranted on the dose and the inter-dose recovery time to optimize the potential therapeutic benefits of this promising intervention.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Masculino , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Cinética , Oxígeno , Estrés Oxidativo/fisiología
10.
Healthcare (Basel) ; 11(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107936

RESUMEN

Hypoxia and hyperoxia are both worrisome issues potentially affecting SCUBA divers, but validated methods to monitor these two conditions underwater are still lacking. In this experiment, a volunteer SCUBA diver was equipped with a pulse oximeter to detect peripheral oxygen saturation (SpO2) and a device to monitor the oxygen reserve index (ORi™). ORi™ values were compared with arterial blood oxygen saturation (SaO2) and the partial pressure of oxygen (PaO2) obtained from the cannulated right radial artery at three steps: at rest out of water; at -15 m underwater after pedaling on a submerged bike; after resurfacing. SpO2 and ORi™ mirrored the changes in SaO2 and PaO2, confirming the expected hyperoxia at depth. To confirm the potential usefulness of an integrated SpO2 and ORi™ device, further studies are needed on a broader sample with different underwater conditions and diving techniques.

11.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835421

RESUMEN

Exposure to acute normobaric hypoxia (NH) elicits reactive oxygen species (ROS) accumulation, whose production kinetics and oxidative damage were here investigated. Nine subjects were monitored while breathing an NH mixture (0.125 FIO2 in air, about 4100 m) and during recovery with room air. ROS production was assessed by Electron Paramagnetic Resonance in capillary blood. Total antioxidant capacity, lipid peroxidation (TBARS and 8-iso-PFG2α), protein oxidation (PC) and DNA oxidation (8-OH-dG) were measured in plasma and/or urine. The ROS production rate (µmol·min-1) was monitored (5, 15, 30, 60, 120, 240 and 300 min). A production peak (+50%) was reached at 4 h. The on-transient kinetics, exponentially fitted (t1/2 = 30 min r2 = 0.995), were ascribable to the low O2 tension transition and the mirror-like related SpO2 decrease: 15 min: -12%; 60 min: -18%. The exposure did not seem to affect the prooxidant/antioxidant balance. Significant increases in PC (+88%) and 8-OH-dG (+67%) at 4 h in TBARS (+33%) one hour after hypoxia offset were also observed. General malaise was described by most of the subjects. Under acute NH, ROS production and oxidative damage resulted in time and SpO2-dependent reversible phenomena. The experimental model could be suitable for evaluating the acclimatation level, a key element in the context of mountain rescues in relation to technical/medical workers who have not had enough time for acclimatization-as, for example, during helicopter flights.


Asunto(s)
Antioxidantes , Hipoxia , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Sustancias Reactivas al Ácido Tiobarbitúrico , Hipoxia/metabolismo , Oxígeno/metabolismo , Altitud
12.
Artículo en Inglés | MEDLINE | ID: mdl-36833850

RESUMEN

Freeskiing is performed in an extreme environment, with significant physical effort that can induce reactive oxygen species (ROS) generation and dehydration. This study aimed to investigate the evolution of the oxy-inflammation and hydration status during a freeskiing training season with non-invasive methods. Eight trained freeskiers were investigated during a season training: T0 (beginning), T1-T3 (training sessions), and T4 (after the end). Urine and saliva were collected at T0, before (A) and after (B) T1-T3, and at T4. ROS, total antioxidant capacity (TAC), interleukin-6 (IL-6), nitric oxide (NO) derivatives, neopterin, and electrolyte balance changes were investigated. We found significant increases in ROS generation (T1A-B +71%; T2A-B +65%; T3A-B +49%; p < 0.05-0.01) and IL-6 (T2A-B +112%; T3A-B +133%; p < 0.01). We did not observe significant variation of TAC and NOx after training sessions. Furthermore, ROS and IL-6 showed statistically significant differences between T0 and T4 (ROS +48%, IL-6 +86%; p < 0.05). Freeskiing induced an increase in ROS production, which can be contained by antioxidant defense activation, and in IL-6, as a consequence of physical activity and skeletal muscular contraction. We did not find deep changes in electrolytes balance, likely because all freeskiers were well-trained and very experienced.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno , Estrés Oxidativo/fisiología , Proyectos Piloto , Estaciones del Año , Interleucina-6 , Inflamación
13.
Eur J Appl Physiol ; 123(1): 143-158, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214902

RESUMEN

PURPOSE: Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS. METHODS: To mimic IGN, we administered a deep narcosis test via a dry dive test (DDT) at 48 msw in a multiplace hyperbaric chamber to six well-trained divers. We collected: (1) saliva samples before DDT (T0), 25 msw (descending, T1), 48 msw (depth, T2), 25 msw (ascending, T3), 10 min after decompression (T4) to dopamine and/or reactive oxygen species (ROS) levels; (2) blood and urine samples at T0 and T4 for OxS too. We administered cognitive tests at T0, T2, and re-evaluated the divers at T4. RESULTS: At 48 msw, all subjects experienced IGN, as revealed by the cognitive test failure. Dopamine and total antioxidant capacity (TAC) reached a nadir at T2 when ROS emission was maximal. At decompression (T4), a marked drop of BDNF/glutamate content was evidenced, coinciding with a persisting decline in dopamine and cognitive capacity. CONCLUSIONS: Divers encounter IGN at - 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.


Asunto(s)
Disfunción Cognitiva , Buceo , Narcosis por Gas Inerte , Estupor , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Descompresión/efectos adversos , Buceo/efectos adversos , Dopamina/metabolismo , Glutamatos , Narcosis por Gas Inerte/complicaciones , Especies Reactivas de Oxígeno , Estupor/etiología
14.
Sports Med Open ; 8(1): 80, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723766

RESUMEN

BACKGROUND: The aim of this work was to investigate the serum amino acid (AA) changes after a breath-hold diving (BH-diving) training session under several aspects including energy need, fatigue tolerance, nitric oxide (NO) production, antioxidant synthesis and hypoxia adaptation. Twelve trained BH-divers were investigated during an open sea training session and sampled for blood 30 min before the training session, 30 min and 4 h after the training session. Serum samples were assayed for AA changes related to energy request (alanine, histidine, isoleucine, leucine, lysine, methionine, proline threonine, valine), fatigue tolerance (ornithine, phenylalanine, tyrosine), nitric oxide production (citrulline), antioxidant synthesis (cystine, glutamate, glycine) and hypoxia adaptation (serine, taurine). MAIN RESULTS: Concerning the AA used as an energy support during physical effort, we found statistically significant decreases for all the investigated AA at T1 and a gradual return to the basal value at T2 even if alanine, proline and theonine still showed a slight significant reduction at this time. Also, the changes related to the AA involved in tolerance to physical effort showed a statistically significant decrease only at T1 respect to pre-diving value and a returned to normal value at T2. Citrulline, involved in NO production, showed a clear significant reduction both at T1 and T2. Concerning AA involved in endogenous antioxidant synthesis, the behaviour of the three AA investigated is different: we found a statistically significant increase in cystine both at T1 and T2, while glycine showed a statistically significant reduction (T1 and T2). Glutamate did not show any statistical difference. Finally, we found a statistically significant decrease in the AA investigated in other hypoxia conditions serine and taurine (T1 and T2). CONCLUSIONS: Our data seem to indicate that the energetic metabolic request is in large part supported by AA used as substrate for fuel metabolism and that also fatigue tolerance, NO production and antioxidant synthesis are supported by AA. Finally, there are interesting data related to the hypoxia stimulus that indirectly may confirm that the muscle apparatus works under strong exposure conditions notwithstanding the very short/low intensity of exercise, due to the intermittent hypoxia caused by repetitive diving.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35564694

RESUMEN

Carbon Monoxide (CO) intoxication is still a leading cause of mortality and morbidity in many countries. Due to the problematic detection in the environment and subtle symptoms, CO intoxication usually goes unrecognized, and both normobaric and hyperbaric oxygen (HBO) treatments are frequently administered with delay. Current knowledge is mainly focused on acute intoxication, while Delayed Neurological Sequelae (DNS) are neglected, especially their treatment. This work details the cases of two patients presenting a few weeks after CO intoxication with severe neurological impairment and a characteristic diffused demyelination at the brain magnetic resonance imaging, posing the diagnosis of DNS. After prolonged treatment with hyperbaric oxygen, combined with intravenous corticosteroids and rehabilitation, the clinical and radiological features of DNS disappeared, and the patients' neurological status returned to normal. Such rare cases should reinforce a thorough clinical follow-up for CO intoxication victims and promote high-quality studies.


Asunto(s)
Intoxicación por Monóxido de Carbono , Oxigenoterapia Hiperbárica , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Progresión de la Enfermedad , Humanos , Oxígeno , Terapia por Inhalación de Oxígeno/métodos
16.
Biol Open ; 11(6)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35616023

RESUMEN

During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan-Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains.


Asunto(s)
Drosophila melanogaster , Longevidad , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hipoxia/genética , Longevidad/genética , Masculino , Oxígeno/farmacología , Especies Reactivas de Oxígeno/metabolismo
17.
Healthcare (Basel) ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35206797

RESUMEN

(1) Background: SCUBA diving can influence changes of several hematological parameters (HP) but the changes of HP in the decompression phases are still unclear. The aim of this study was to investigate any possible relationship between HP and predisposition to inert gas bubble formation after a single recreational dive. (2) Methods: Blood, obtained from 32 expert SCUBA divers, was tested for differences in white blood cells (WBC), granulocytes (GRAN), lymphocytes (LYM), and monocytes (MONO), red blood cells (RBC), and platelets (PLT) between bubblers (B) and non-bubblers (NB). (3) Results: We found inter-subject differences in bubble formation (considering the same diving profile performed by the divers) and a statistically significant higher number of total WBC, GRAN and LYM in NB as compared to the B divers in the pre and in the post diving sample, while no statistical differences were found for MONO and PLT. In addition, we did not find any statistically significant difference between NB and B in RBC. (4) Conclusions: Our results, even if in absence of investigated anti-inflammatory markers, could indicate a relationship between low WBC numbers and bubble formation. This aspect may explain a possible cause of inter-subject differences in bubble formation in divers performing the same dive profile.

18.
Sci Rep ; 12(1): 1142, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064225

RESUMEN

Competitive Offshore Ocean Sailing is a highly demanding activity in which subjects are exposed to psychophysical stressors for a long time. To better define the physiological adaptations, we investigated the stress response of subjects exposed to 3-days long ocean navigation with disruption of circadian rhythms. 6 male subjects were involved in the study and provided urine and saliva samples before setting sail, during a single day of inshore sailing, during 3-days long ocean navigation, and at the arrival, to measure oxidative stress, cortisol, nitric oxide metabolites (NOx) and metabolic response. Motion Sickness questionnaires were also administered during the navigation. The crew suffered a mean weight loss of 1.58 kg. After the long navigation, a significant increase in ROS production and decrease in total antioxidant capacity and uric acid levels were observed. Lipid peroxidation, NO metabolites, ketones, creatinine, and neopterin levels were also increased. Furthermore, a significant increase in cortisol levels was measured. Finally, we found a correlation between motion sickness questionnaires with the increase of NOx, and no correlation with cortisol levels. Physical and psychological stress response derived from offshore sailing resulted in increased oxidative stress, nitric oxide metabolites, and cortisol levels, unbalanced redox status, transient renal function impairment, and ketosis. A direct correlation between motion sickness symptoms evaluated through questionnaires and NOx levels was also found.


Asunto(s)
Ritmo Circadiano/fisiología , Mareo por Movimiento/epidemiología , Estrés Oxidativo/fisiología , Deportes Acuáticos/estadística & datos numéricos , Adulto , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Mareo por Movimiento/fisiopatología , Óxido Nítrico/metabolismo , Encuestas y Cuestionarios/estadística & datos numéricos
19.
Artículo en Inglés | MEDLINE | ID: mdl-35055791

RESUMEN

Impaired flow mediated dilation (FMD), an index of vascular stress, is known after SCUBA diving. This is related to a dysfunction of nitric oxide (NO) availability and a disturbance of the redox status, possibly induced by hyperoxic/hyperbaric gas breathing. SCUBA diving is usually performed with a mask only covering "half face" (HF) and therefore forcing oral breathing. Nasal NO production is involved in vascular homeostasis and, as consequence, can significantly reduce NO possibly promoting vascular dysfunction. More recently, the utilization of "full-face" (FF) mask, allowing nasal breathing, became more frequent, but no reports are available describing their effects on vascular functions in comparison with HF masks. In this study we assessed and compared the effects of a standard shallow dive (20 min at 10 m) wearing either FF or a HF mask on different markers of vascular function (FMD), oxidative stress (ROS, 8-iso-PGF2α) and NO availability and metabolism (NO2, NOx and 3-NT and iNOS expression). Data from a dive breathing a hypoxic (16% O2 at depth) gas mixture with HF mask are shown allowing hyperoxic/hypoxic exposure. Our data suggest that nasal breathing might significantly reduce the occurrence of vascular dysfunction possibly due to better maintenance of NO production and bioavailability, resulting in a better ability to counter reactive oxygen and nitrogen species. Besides the obvious outcomes in terms of SCUBA diving safety, our data permit a better understanding of the effects of oxygen concentrations, either in normal conditions or as a strategy to induce selected responses in health and disease.


Asunto(s)
Buceo , Máscaras , Óxido Nítrico , Estrés Oxidativo , Oxígeno
20.
J Appl Physiol (1985) ; 132(2): 283-293, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941439

RESUMEN

Pulmonary gas exchange during diving or in a dry hyperbaric environment is affected by increased breathing gas density and possibly water immersion. During free diving, there is also the effect of apnea. Few studies have published blood gas data in underwater or hyperbaric environments: this review summarizes the available literature and was used to test the hypothesis that arterial Po2 under hyperbaric conditions can be predicted from blood gas measurement at 1 atmosphere assuming a constant arterial/alveolar Po2 ratio (a:A). A systematic search was performed on traditional sources including arterial blood gases obtained on humans in hyperbaric or underwater environments. The a:A was calculated at 1 atmosphere absolute (ATA). For each condition, predicted arterial partial pressure of oxygen ([Formula: see text]) at pressure was calculated using the 1 ATA a:A, and the measured [Formula: see text] was plotted against the predicted value with Spearman correlation coefficients. Of 3,640 records reviewed, 30 studies were included: 25 were reports describing values obtained in hyperbaric chambers, and the remaining were collected while underwater. Increased inspired O2 at pressure resulted in increased [Formula: see text], although underlying lung disease in patients treated with hyperbaric oxygen attenuated the rise. [Formula: see text] generally increased only slightly. In breath-hold divers, hyperoxemia generally occurred at maximum depth, with hypoxemia after surfacing. The a:A adequately predicted the [Formula: see text] under various conditions: dry (r = 0.993, P < 0.0001), rest versus exercise (r = 0.999, P < 0.0001), and breathing mixtures (r = 0.995, P < 0.0001). In conclusion, pulmonary oxygenation under hyperbaric conditions can be reliably and accurately predicted from 1 ATA a:A measurements.


Asunto(s)
Buceo , Oxigenoterapia Hiperbárica , Análisis de los Gases de la Sangre , Humanos , Oxígeno , Presión Parcial , Intercambio Gaseoso Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...